Adhesive primer consumption

DESIGN OF ADHESIVE LAYER GEOMETRY

The elastic adhesive can only fully develop its positive properties (movement compensation, peeling and impact resistance) if the adhesive layer geometry is correct.

Above all, this means keeping to a minimum layer thickness that must be individually suited to the bond. A layer thickness of $2-3 \mathrm{~mm}$ has proved best for required where considerable movement sexpected.

Depths over 20 mm should be avoided with standard Sikaflex ${ }^{\circ}$ grades because the adhesive would take too long to harden.

PRIMER AND CLEANER CONSUMPTION

$\left.$	PRODUCT	YIELD PER 100 ML AT $20 ~ M M ~ W I D T H ~$
$(\mathrm{~m})$		
:---		
CATION TISSUE		
APPLICATION*		
$\left(1 / \mathrm{m}^{2}\right)$	\right\rvert\,	

Make sure that:

- The primed areas coincide with the bonding areas
- The right primer for the material surface is used
- The primer is completely dry and cured before bonding
i.e. watch the evaporation time
- Primers are shaken if necessary

FORMULAE
 TO ESTIMATE THE NUMBER OF LITRES REQUIRED

Normal bead application;

Quantity in litres $=$ bead width $(\mathrm{mm}) \times$ bead thickness (mm) \times joint length (metres) 1000
(Dimensions are for wet adhesive in rectangular cross section)

Large area bonding and laminating

Quantity in litres $=$ width (metres) \times length (metres) \times wet film adhesive thickness (mm)

TO DETERMINE THE VOLUME OF A SEMI-CIRCULAR BEAD

Quantity in litres $=3.142 \times$ diameter $(\mathrm{mm}) \times$ diameter $(\mathrm{mm}) \times$ length (metres)

$$
8000
$$

$$
8000
$$

TO DETERMINE THE VOLUME OF A TRIANGULAR BEAD

Quantity in litres $=$ width $(\mathrm{mm}) \times$ height $(\mathrm{mm}) \times$ length (metres)

$$
2000
$$

TO CONVERT KILOGRAMS TO LITRES
Quantity in litres = weight in kilogram
density (grams / ml or kg/l)

TO CONVERT BETWEEN TEMPERATURE SCALES

Fahrenheit $=\frac{\left(\text { degrees celsius }\left({ }^{\circ} \mathrm{C}\right) \times 5\right)}{9}-32$
Celsius $=\left(\right.$ degrees fahrenheit $\left.\left({ }^{\circ} \mathrm{F}\right) \times 9\right)+32$

The information, and, in particular, th ecommendations relating to the application and nd-use of Sika products, are given in good faith of the products when properly stored, handled and applied under normal conditions. In practice, the differences in materials, substrates and actual site conditions are such that no warranty in respect of merchantability or of fitness for a particular purpose, nor any liability arising out of ny legal relationship whatsoever, can be inferred ither from this information, or from any written ffered

The proprietary rights of third parties must be observed. All orders are accepted subject to our current terms of sale and delivery. Users should ways refer to the most recent issue of the Sik roduct Datasheet for the product concerned. opies of which will be supplied on request.

WEIGHT	
1 ounce $=$	28.3495 g
1 pound =	0.45359 kg
1 hundredweight =	50.8023 kg
AREA	
$1 \mathrm{inch}^{2}=$	$645.16 \mathrm{~mm}^{2}$
1 foot $^{2}=$	$0.0929 \mathrm{~m}^{2}$
1 yard $^{2}=$	$0.8361 \mathrm{~m}^{2}$
1 acre =	$4046.86 \mathrm{~m}^{2}$
$1 \mathrm{mile}^{2}=$	$2.59 \mathrm{~km}^{2}$
Volume	
1 pint (UK) =	0.56831
1 pint (USA) =	0.47321
1 gallon (UK) =	4.54611
1 gallon (USA)	3.7854

\section*{| LENGTH | |
| :--- | :--- |
| 1 inch $=$ | 25.4 mm |
| 1 foot $=$ | 0.3048 m |
| 1 yard $=$ | 0.9144 m |
| 1 furlong $=$ | 201.17 m |
| 1 mile $=$ | 1.6093 km |}

PRESSURE	
1 bar $=$	0.1 MPa
1 Pascal $=$	$1 \mathrm{~N} / \mathrm{m}^{2}$
$1 \mathrm{~kg} / \mathrm{cm}^{2}=$	0.09807 MPa
$1 \mathrm{psi}=$	6894.76 Pa

SI PREFIXES
NAME
SYMBOL
giga
FACTOR
mega
kilo
h
hecto
deca
h
deci
da
centi
d
milli
c
micro
nano

